
HierarchiCraft: Neural-Symbolic System to Support Agent
Interactive Planning and Learning

Jieyu Zhou
Georgia Institute of Technology

Atlanta, Georgia, USA
jzhou625@gatech.edu

Jisu Kim
Georgia Institute of Technology

Atlanta, Georgia, USA
jisu.kim@gatech.edu

Baixiao Chen
Emory University

Atlanta, Georgia, USA
baixiao.chen@emory.edu

Daniel Weitekamp
Georgia Institute of Technology

Atlanta, Georgia, USA
dweitekamp3@gatech.edu

Christopher J. MacLellan
Georgia Institute of Technology

Atlanta, Georgia, USA
cmaclell@gatech.edu

Figure 1: Overview of our neural-symbolic interactive planning framework. The agent’s symbolic procedural memory and
planning module form the system design layer, while the interactive interface enables users to understand, co-plan, and correct
at multiple levels of abstraction.

Abstract
Large language model (LLM)–based agents are increasingly used
in everyday applications, yet their reasoning remains opaque and
their feedback loops brittle. Users struggle to understand how these
agents act or to ensure that feedback leads to lasting improvement.
We present HierarchiCraft, a neuro-symbolic system that unifies a
Hierarchical Task Network (HTN) planner with an interactive in-
terface for interpretable, controllable, and learnable agent behavior.
User feedback is compiled into symbolic methods and precondi-
tions, enabling lightweight procedural learning without fine-tuning.
The interface mirrors the planner’s hierarchy, supporting pause-
able, stepwise execution and three feedback pathways: selecting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, Washington, DC, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

alternative decompositions, directly editing nodes in the GUI, or
authoring new methods in natural language. A formative study and
comparative evaluation show that HierarchiCraft improves user
understanding, oversight, and confidence, offering a design probe
for error handling and continual learning in agentic AI.

ACM Reference Format:
Jieyu Zhou, Jisu Kim, Baixiao Chen, Daniel Weitekamp, and Christopher J.
MacLellan. 2025. HierarchiCraft: Neural-Symbolic System to Support Agent
Interactive Planning and Learning. In . ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Large language model (LLM)–based agents rely solely on model
calls to generate plans and directly execute actions in the environ-
ment. These agents have rapidly entered everyday applications such
as multimodal assistants [9, 44], web automation [18, 29, 30], and
games [27, 54]. However, these agents remain highly error-prone,
achieving only 30% accuracy on multi-step benchmarks [36, 59, 60]
and therefore still require human oversight and feedback. However,
achieving effective user oversight and feedback, we need to face
two systemitic challenges:

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Jieyu Zhou, Jisu Kim, Baixiao Chen, Daniel Weitekamp, and Christopher J. MacLellan

First, users struggle to understand how LLM-based agents reason
and act. LLM’s next-token prediction over probability is fundamen-
tally a black box, offering no interpretable link between reasoning
and output. Even with explanations such as chain-of-thoughts [56]
or explainable AI methods [25, 32], these remain surface-level ob-
servations of agent behavior. LLMs lack a true grasp of causality
and logic, instead mimicking linguistic patterns from training data
[40, 48, 52], which leads to hallucinations and ungrounded reason-
ing. The opacity pure LLM-based architecture makes it it difficult for
users to identify where errors occur and provide targeted feedback.

Second, user feedback is not effectively absorbed into the agent’s
knowledge or reliably applied to future tasks. LLM-based agents
generally learn through two mechanisms: fine-tuning [10, 42] or
in-context learning [15, 46, 62]. Fine-tuning cannot cannot eas-
ily integrate small feedback loops (e.g., user corrections over one
action) and risk catastrophic forgetting [43, 64]. In-context learn-
ing inherits LLM’s limited reasoning and planning ability, yielding
ungrounded or inconsistent reasoning steps [24], poor cross-task
transferability [31], and unstable memory under long prompts or
retrieval augmentation [4].

Recent HCI research has explored how users can provide feed-
back to AI agents, such as offering stepwise guidance on com-
plex tasks [23, 65], visualizing the execution process [11, 13], and
co-constructing the agent’s workflow [2, 26, 49]. However, these
systems are typically built on LLM-wrapper pipelines that call
LLMs directly for planning and execution, leaving the two afore-
mentioned challenges unresolved. Their reasoning traces remain
based on probabilistic next-token prediction and thus inherently
uninterpretable. Meanwhile, human feedback remains confined to
correcting isolated errors in specific environment states and cannot
be internalized or generalized to improve the agent’s reasoning
and planning over time. Consequently, user control over agent be-
havior remains constrained and agent still remain error-prone as
feedback cannot truly improve agent performance. Therefore, to
resolve these two challenges, we should not only design intuitive
user interface, but also a fundamental reconsideration of how the
agent itself is architected.

We present a neural-symbolic agentHierichiCraft that re-architects
both the system and the interface. Unlike prior work that wraps
LLMs with surface-level workflow UIs, our approach rethinks the
underlying agent framework by introducing symbolic components:
Hierarchical Task Network (HTN). User feedback is compiled into
symbolic methods and preconditions, supporting lightweight, mod-
ular learning without fine-tuning and avoiding forgetting. In addi-
tion, HTNs save task execution methods with their preconditions as
a symbolic planner, which can be reliably used as interpretation and
robustly functions without hallucination. At the interface level, our
design addresses three key goals. (1) Understanding: By visualizing
plans as structured hierarchical decompositions, the system enables
users to quickly grasp what the agent is doing and why, offering
clearer task context than existing sequential, text-based displays. (2)
Execution: The interface supports hierarchical, stepwise execution
with pausing, allowing users to inspect or intervene at any level of
abstraction rather than waiting for end-to-end autonomous runs.
This layered execution design enhances transparency and control-
lability. (3) Correction: The system provides multiple pathways
for error correction—users may select alternative decompositions,

directly edit nodes in the GUI, or author new methods in natural
language. These lightweight mechanisms make correction more
flexible and ensure that user input is efficiently integrated into the
agent’s procedural knowledge.

Our contributions are:
(1) A qualitative formative study identifying user needs for hi-

erarchical co-execution and durable feedback absorption,
highlighting limits of sequential, end-to-end LLM agents.

(2) A neuro-symbolic framework that compiles user feedback
into reusable procedures with explicit preconditions, avoid-
ing fine-tuning costs and catastrophic forgetting.

(3) A tightly coupled system and interface: symbolic planning
enables hierarchical visualization, pausing, and three comple-
mentary correction pathways that map directly to symbolic
updates.

(4) An empirical evaluation demonstrating user preference and
improved controllability over neural-only baselines, and a
discussion of implications for error handling in agentic AI.

2 Related Work
We review prior work on agent learning and human oversight,
outlining technical and interface-level gaps that motivate Hierarch-
iCraft’s symbolic, hierarchical design.

2.1 Agent Learning
Pure LLM-based agents generally learn through two mechanisms:
parametric updates or in-context learning. However, both approaches
suffer from limited robustness and interpretability, motivating the
integration of symbolic components into LLM frameworks.

Parametric updates—typically implemented by fine-tuning a
large base model—modify model weights through additional train-
ing to acquire new knowledge. A representative fine-tuning ap-
proach leverages reward models to guide optimization, with Human
Feedback Reinforcement Learning (RLHF) as a prominent example
[10, 42]. While this can theoretically enhance reasoning ability, it
is brittle, computationally expensive and data-hungry. Fine-tuning
on limited data often causes overfitting and instability, where new
updates disrupt previously learned behaviors or even lead to cata-
strophic forgetting across domains [43, 64]. Moreover, the gain in
correctness is not proportional to the cost in time and resources [53].
Parametric updates also lack online adaptability—they cannot in-
crementally incorporate small feedback loops (e.g., user corrections
or contextual changes).

Consequently, recent research has shifted toward in-context
learning, which adapts reasoning and planning behavior without
modifying model weights. Frameworks such as ReAct [62], Re-
flexion [46], and RAP [15] extend LLM reasoning by interleaving
reasoning traces and actions, maintaining episodic memory for self-
reflection, or constructing reasoning trees to balance exploration
and exploitation. Although in-context learning supports incremen-
tal adaptation and avoids costly retraining, the robustness problem
still remains unsolved. LLMs appear capable of reasoning through
contextual cues, yet this ability primarily reflects linguistic fluency
rather than genuine algorithmic reasoning [40, 48]. As a result, Re-
Act often produces ungrounded or inconsistent reasoning steps that
misalign with the environment state [24], and Reflexion improves



HierarchiCraft: Neural-Symbolic System to Support Agent Interactive Planning and Learning Conference’17, July 2017, Washington, DC, USA

performance only under specific conditions—when initial responses
are unreliable and task difficulty is high—showing limited gener-
ality [21, 31]. Moreover, their reliance on extended context often
necessitates retrieval-augmented generation (RAG) [28], which in-
troduces additional failure modes, including missing or misranked
documents, poor consolidation, and incorrect specificity [4].

Beyond robustness, both parametric and in-context approaches
face a fundamental limitation from the human perspective. Their
probabilistic formulation differs fundamentally from how humans
reason and plan [7, 50]. Evenwith the aid of explainability tools, this
black-box nature cannot be fully resolved—the underlying process
remains opaque and non-causal, making it difficult for humans
to fully comprehend or predict model behavior. Moreover, their
probabilistic generation often results in hallucinations and logically
inconsistent outputs [17, 19, 52], further undermining human trust
in their reasoning.

To address these challenges, recent efforts have incorporated
symbolic components into LLM frameworks—using symbolic toolk-
its for logical computation [22], coupling LLMs with symbolic rea-
soning engines [61], or employing symbolic checkers to validate
candidate actions [40]. However, these systems remain fully au-
tonomous, optimizing via trial and error without human-in-the-
loop feedback. We next review HCI systems for human oversight,
showing that many adopt visualization-first designs over action-
centric LLM wrappers, which rarely realize durable learning.

2.2 Human Oversight in Agents
The rapid proliferation of AI agents has reignited a long-standing
HCI debate over automation and human control [16, 33, 37, 47].
Most commercial agents nowadays executing tasks end-to-end with
little to no user oversight [1, 38, 41], making it hard for user to pause
the agent and correct the wrong step. HCI researchers have pro-
posed a wide range of tools for human oversight in agent planning
and execution across various domains, such as creativity [14, 49],
data analysis [13, 23] coding[45]. Across these studies, there are
two visualization paradigms: chat-first and GUI-first. The chat-first
systems enables user to modify agent behavior through conver-
sation interaction [11, 13, 23, 26]. While some systems integrate
supplementary visual widgets for user to better understand the
process, the chat remains the central control medium. In contrast,
the GUI-first paradigm represents each action as a node on the
canvas, allowing users to directly drag connections, delete or add
nodes to revise the plan [2, 12, 49, 63, 65]. Among these GUI-first de-
signs, hierarchical visualization is commonly adopted approach. For
instance, WaitGPT visualizes hierarchical data transformation tra-
jectories [58], AmbigChat structures conversations hierarchically
to support efficient search and disambiguation [35], and Graph-
logue presents layered visualizations of conceptual relationships
[20].

Despite these advances, many systems in HCI field lack learning
ability and are brittle in complex, changing environments. This lim-
itation arises because most systems are visualization-oriented front
ends built on an LLM-wrapper pipeline (i.e., decomposing tasks and
prompting an LLM to handle subtasks) without mechanisms for
continual or cross-episode learning. Two factors contribute to this
problem. First, few system implement the conventional learning

approaches disucssed in Section 2.1 (parametric updates and in-
context learning). Many systems’ prompting is shallow and ad hoc
without in-context schemas or structured error traces, so behavior
does not improve across episodes. Second, an agent architecture
generally comprises profile, memory, planning, and action modules
[50, 55, 66]. These systems emphasize only the action component,
omitting explicit memory and planning. As a result, knowledge is
neither retained nor consolidated, and interface edits cannot be
validated against an executable internal model. A partial exception
is VAL, which compiles natural-language instructions into symbolic
structures [27]; however, its interaction is primarily chat-driven
and does not foreground visualization of the executable plan state.

HierarchiCraft bridges frontend and backend by making a sym-
bolic, HTN-based representation the substrate of the system. The
same hierarchical structure that governs planning and execution
is rendered to the UI, so user edits (e.g., refine, reorder, replace,
prune) map directly to well-typed plan operations rather than ad-
hoc prompt patching. Rather than starting from an interface wish
list and then “stitching” prompts to approximate it, we co-design
the agent’s internal structure and the interface, achieving a tight
alignment between architecture and visualization while enabling
durable learning mechanisms.

3 Formative Study
We conducted a formative study with 10 participants to understand
how users perceive and interact with current agentic interfaces.
We selected five tasks to represent a broad spectrum of domains,
including everyday activities (travel planning and online shopping),
office workflows (document process and image editing), and virtual
environments (game playing), drawing from established AI agent
benchmarks [51, 57, 59, 60, 68]. We selected three agents that have
different visualization rationales: (1) actions as clickable nodes with
environment screenshots, (2) actions embedded in replay, and (3)
replay only. We randomly assigned tasks to these agents. Each ses-
sion lasted approximately 45 minutes experiencing these five tasks.
Participants were asked to think aloud, verbalizing their judgments
about correctness and describing how they identified errors. Af-
ter task completion, we conducted semi-structured interviews to
explore participants’ expectations and desired experiences with
agent interfaces. All sessions were recorded, transcribed, and the-
matically analyzed [6, 8]. Two researchers collaboratively coded
the transcripts and refined emerging themes about how to help
users better understand agent reasoning and facilitate learning from
human feedback.

3.1 Interpretable Planning and Action
The hallucination of LLM-based agent makes participants difficult
to understand its behavior and fail to provide feedback. LLM-based
agents generates redundant and verbose reasoning traces but lack
of rationale. One participant remarked, "Since it has a lot of ran-
dom code execution involved, I have no idea what to look for."
(P5) This lack of interpretability was especially problematic when
agents made mistakes. The most frequent error we observed was a
mismatch between the agent’s described activity and its actual exe-
cution. For example, in a shopping-cart task, the agent’s log claimed
that all four selected items were added, but only two appeared in the



Conference’17, July 2017, Washington, DC, USA Jieyu Zhou, Jisu Kim, Baixiao Chen, Daniel Weitekamp, and Christopher J. MacLellan

Figure 2: Hierarchical visualization and co-execution in HierarchiCraft. (1) The task hierarchy allows users to pause execution
at any level. (2) Executed subtasks are hidden while the current node is highlighted to focus attention. (3) The agent provides
interpretable reasoning grounded in symbolic preconditions. (4) The environment is jointly perceived by both the agent and
the user, enabling verification and shared situational awareness.

cart. Such hallucinated perceptions of successful completion reflect
the ungrounded and inconsistent reasoning frequently observed in
LLM-based agents [40, 48, 52]. As one participant noted, “It hid the
mistake from me by saying conflicting information. I think I would
believe what it said and then be disappointed when my groceries
arrived.” (P4) Users found these hallucinations difficult to detect and
even harder to correct, highlighting the need for agents to explicitly
verify task completion through symbolic checking mechanisms.

Current agents does not have planning phase, executing user
command immediately. Users cannot predict what the agent will do
next and do not know the agent’s intention. Participants expressed
a strong preference for seeing an overview of the plan before exe-
cution to check their commands were understood by agents. Early
plan alignment thus helps users identify potential issues and avoid
wasted effort [3, 67].

Design Goal: Generate grounded, interpretable plans that accu-
rately reflect the real-world environment and mitigate hallucina-
tion.

3.2 Reliable Control
adoption strategy Agents frequently failed to improve after user
corrections. For instance, in the hotel booking task, the target dates
were July 4–12, but the agent initially selected July 9–12. After being
corrected, it instead chose July 4–August 12. Even when the agent
eventually produced the correct dates, users still doubted whether
it had truly learned from feedback. But users still feel confused and
did not know if the agent can perform well when it encounters the
same situation next time. Participant P8 commented, "The agents
should verify understanding [after I gave feedback]. Its clarifying ques-
tions can make it easy to see when they are confusing." Agents should
respond to user correction by explicitly summarizing changes in
the world state or clarifying residual ambiguities, to signal their
ability to learn from users. Furthermore, when encountering similar

situations in the future, agents should leverage memory to retrieve
prior user feedback, adapt their decision-making accordingly, and
make visible which parts of their reasoning draw on previous in-
teractions.

Design Goal: Enable agents to absorb user feedback into their
knowledge and communicate signals of learning and understanding.

3.3 Flexible Error Detection and Correction
Current agents typically visualize plans as lengthy sequential text
lists, causing users to become disoriented and making it difficult
to locate specific errors. One participant noted, “If I agree with the
way you’ve laid out the tasks, I’d want to drill down specifically into
the subtasks where I think the error is.” (P4) To support efficient
error detection, agents should visualize plans at multiple levels of
abstraction, allowing users to progressively hide or reveal details
as needed. This design aligns with the principle of progressive dis-
closure, which advocates for presenting information incrementally
to reduce cognitive load [5, 39].

Participants emphasized the importance of pausing execution to
provide timely feedback. Current end-to-end execution pipelines
make it impossible to intervene once an early error occurs, often
leading to error propagation or repetitive loops. Allowing users to
interrupt or correct the process mid-execution can prevent unnec-
essary actions and reduce wasted API calls [34, 67]. Furthermore,
agents should support multiple correction modalities. “If the task
is simple, I will directly correct it in the action node. If the task
is difficult and the error is complex, I will explain in detail to the
agent how to correct it.” (P10) The type and complexity of the task
often influence users’ feedback strategies.

Design Goal: Visualize plans at multiple levels of abstraction
and allow users to pause and modify execution through flexible
feedback mechanisms



HierarchiCraft: Neural-Symbolic System to Support Agent Interactive Planning and Learning Conference’17, July 2017, Washington, DC, USA

4 System Design
HierarchiCraft couples a neuro-symbolic agent with an interaction
model that keeps planning interpretable, execution controllable,
and learning lightweight. The architecture centers on a Hierarchical
Task Network (HTN) planner and a symbolic procedural memory;
the interface renders this same hierarchy so that user oversight
and edits are always type-safe plan operations rather than prompt
patching. Figure 1 summarizes the loop: an LLM produces an ini-
tial outline, the system compiles it into symbolic methods with
preconditions, the user supervises hierarchical co-execution, and
feedback is stored back into symbolic memory to affect subsequent
planning without fine-tuning. This section details the interaction
flow, representation, visualization, feedback mechanisms, and the
planner’s ranking and learning procedure that together realize the
design goals derived from our formative study.

4.1 Interaction Flow
The system maintains a closed loop across user, planner, and envi-
ronment. Given a user goal, the agent first enters a planning phase
that interprets the LLM outline and proposes a decomposition; be-
fore any environment actuation, the plan is surfaced to the interface
for alignment. During co-execution, users approve subtasks at cho-
sen granularity; confirmed nodes trigger primitive actions while
unconfirmed branches remain pending. Users may pause, inspect,
or refocus on a sub-decomposition, and revise the structure at any
moment. These operations are validated against preconditions and
the current world state. In the feedback phase, corrections—selection
among candidates, natural language authoring of new methods, or
GUI edits—are compiled back into symbolic memory and update
the planner’s ranking signals so that later episodes retrieve and pre-
fer the newly successful method under matching conditions. This
loop delivers transparent intent, interruptibility, and durable ab-
sorption of user input, capabilities difficult to achieve in sequential
end-to-end agents.

4.2 Symbolic Representation
Procedural knowledge is encoded as HTNmethods with typed argu-
ments, preconditions over symbolic world predicates, and ordered
subtasks that expand recursively to primitives. A symbolic parser
maps natural-language plans and predefined domain knowledge
into this representation, emitting well-typed operators and filters
that can be checked against the live game state before execution.
Because preconditions are explicit and executable, the planner can
reject inconsistent proposals early and surface only grounded alter-
natives to the user, providing a stable substrate for interpretation
and control while avoiding hallucinated steps.

4.3 Hierarchical Visualization
The interface renders the planner’s internal HTN one-to-one: each
node corresponds to a subgoal, its children to a candidate decompo-
sition, and leaves to primitive actions. Users progressively disclose
or hide detail, shift focus to the active node, and pause or resume
execution at any level; confirmations flow through the hierarchy
into environment actions, while the current state is mirrored on the
canvas. This direct mirroring eliminates the gulf between reason-
ing traces and actual execution, reduces disorientation from long

Figure 3: Three feedback modes in HierarchiCraft: (1) select-
ing more options, (2) directly editing nodes in the GUI, and
(3) chat-based authoring of new methods, all compiled into
symbolic memory for future planning.

textual logs, and enables precise localization of errors within the
plan tree. The visualization implements the study-elicited needs for
overview-first planning, mid-course intervention, and multilevel
inspection.

4.4 Flexible Feedback Mechanism
HierarchiCraft unifies three feedback pathways, each compiled
into the same symbolic substrate. (1) Alternative selection: when
multiple decompositions satisfy preconditions, the planner ranks
them and surfaces candidates; user choice both drives execution and
updates the corresponding method’s score. (2) Natural-language
authoring: users describe missing strategies, which are parsed into
new methods and inserted into memory with initial scores. (3)
Direct GUI edits: users refine, reorder, or replace nodes, and edits
are translated into validated method updates. All three modes affect
the current episode immediately and are stored to support retrieval
under similar contexts later, addressing the observed gap where
corrections failed to generalize across tasks.

4.5 Interpretable Planning and Learning
Planning proceeds by pattern matching and ranking. Given a tar-
get task and state, the planner filters methods whose precondi-
tions match, computes a score from symbolic context features and
learned rewards, and proposes the top-ranked decomposition. Dur-
ing co-execution, outcome signals (success, failure, or explicit user
approvals) adjust method scores, while users may attach new pre-
conditions that gate applicability. Because updates are local, mod-
ular, and symbolic—not gradient-based—learning is lightweight,
avoids catastrophic forgetting, and yields explanations directly
from the method and its preconditions. Over time, the memory
accrues domain-appropriate alternatives and discriminative guards,
improving robustness without sacrificing transparency.

References
[1] Anthropic. 2024. Introducing computer use, a new Claude 3.5 Sonnet, and Claude

3.5 Haiku. https://www.anthropic.com/news/3-5-models-and-computer-use.
Accessed: July 2025,.

[2] Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and
Elena L Glassman. 2024,. Chainforge: A visual toolkit for prompt engineer-
ing and llm hypothesis testing. In Proceedings of the 2024 CHI Conference on

https://www.anthropic.com/news/3-5-models-and-computer-use


Conference’17, July 2017, Washington, DC, USA Jieyu Zhou, Jisu Kim, Baixiao Chen, Daniel Weitekamp, and Christopher J. MacLellan

Human Factors in Computing Systems. 1–18.
[3] Gagan Bansal, Jennifer Wortman Vaughan, Saleema Amershi, Eric Horvitz, Adam

Fourney, Hussein Mozannar, Victor Dibia, and Daniel S Weld. 2024,. Challenges
in human-agent communication. arXiv preprint arXiv:2412.10380 (2024,).

[4] Scott Barnett, Stefanus Kurniawan, Srikanth Thudumu, Zach Brannelly, and
Mohamed Abdelrazek. 2024,. Seven failure points when engineering a retrieval
augmented generation system. In Proceedings of the IEEE/ACM 3rd International
Conference on AI Engineering-Software Engineering for AI. 194–199.

[5] Benjamin B Bederson and James D Hollan. 1994,. Pad++ a zooming graphical
interface for exploring alternate interface physics. In Proceedings of the 7th annual
ACM symposium on User interface software and technology. 17–26.

[6] Hugh Beyer and Karen Holtzblatt. 1999. Contextual design. interactions 6, 1
(1999), 32–42.

[7] Bikram Pratim Bhuyan, Amar Ramdane-Cherif, Ravi Tomar, and TP Singh. 2024.
Neuro-symbolic artificial intelligence: a survey. Neural Computing and Applica-
tions 36, 21 (2024), 12809–12844.

[8] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. 57–71.
[9] Matthew Chang, Gunjan Chhablani, Alexander Clegg, Mikael Dallaire Cote, Ruta

Desai, Michal Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi,
Priyam Parashar, et al. 2024,. PARTNR: A Benchmark for Planning and Reasoning
in Embodied Multi-agent Tasks. arXiv preprint arXiv:2411.00081 (2024,).

[10] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. 2017,. Deep reinforcement learning from human preferences. Advances
in neural information processing systems 30 (2017,).

[11] Adam J Coscia, Shunan Guo, Eunyee Koh, and Alex Endert. 2025,. OnGoal:
Tracking and Visualizing Conversational Goals in Multi-Turn Dialogue with
Large Language Models. In Proceedings of the 38th Annual ACM Symposium on
User Interface Software and Technology. 1–18.

[12] Anindya Das Antar, Somayeh Molaei, Yan-Ying Chen, Matthew L Lee, and Nikola
Banovic. 2024,. VIME: Visual Interactive Model Explorer for Identifying Capabili-
ties and Limitations of Machine Learning Models for Sequential Decision-Making.
In Proceedings of the 37th Annual ACM Symposium on User Interface Software and
Technology. 1–21.

[13] Will Epperson, Gagan Bansal, Victor C Dibia, Adam Fourney, Jack Gerrits, Erkang
Zhu, and Saleema Amershi. 2025,. Interactive debugging and steering of multi-
agent ai systems. In Proceedings of the 2025 CHI Conference on Human Factors in
Computing Systems. 1–15.

[14] KJ Feng, Kevin Pu, Matt Latzke, Tal August, Pao Siangliulue, Jonathan Bragg,
Daniel SWeld, Amy X Zhang, and Joseph Chee Chang. 2024,. Cocoa: Co-planning
and co-execution with ai agents. arXiv preprint arXiv:2412.10999 (2024,).

[15] Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Zhe Wang, and
Zhiting Hu. [n. d.]. Reasoning with Language Model is Planning with World
Model. In NeurIPS 2023 Workshop on Generalization in Planning,.

[16] Eric Horvitz. 1999,. Principles of mixed-initiative user interfaces. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems. 159–166.

[17] Jie Huang and Kevin Chen-Chuan Chang. 2022,. Towards reasoning in large
language models: A survey. arXiv preprint arXiv:2212.10403 (2022,).

[18] Faria Huq, Jeffrey P Bigham, and Nikolas Martelaro. 2023,. " What’s important
here?": Opportunities and Challenges of Using LLMs in Retrieving Information
from Web Interfaces. arXiv preprint arXiv:2312.06147 (2023,).

[19] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of hallucination in
natural language generation. Comput. Surveys 55, 12 (2023), 1–38.

[20] Peiling Jiang, Jude Rayan, Steven P Dow, and Haijun Xia. 2023,. Graphologue:
Exploring large language model responses with interactive diagrams. In Proceed-
ings of the 36th annual ACM symposium on user interface software and technology.
1–20.

[21] Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain,
Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-
Johnson, et al. 2022,. Language models (mostly) know what they know. arXiv
preprint arXiv:2207.05221 (2022,).

[22] Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak Lenz, Opher Lieber, Nir
Ratner, Yoav Shoham, Hofit Bata, Yoav Levine, Kevin Leyton-Brown, et al. 2022,.
MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning. arXiv
preprint arXiv:2205.00445 (2022,).

[23] Majeed Kazemitabaar, Jack Williams, Ian Drosos, Tovi Grossman, Austin Zachary
Henley, Carina Negreanu, and Advait Sarkar. 2024,. Improving steering and
verification in AI-assisted data analysis with interactive task decomposition. In
Proceedings of the 37th Annual ACM Symposium on User Interface Software and
Technology. 1–19.

[24] Jeonghye Kim, Sojeong Rhee, Minbeom Kim, Dohyung Kim, Sangmook Lee,
Youngchul Sung, and Kyomin Jung. 2025,. ReflAct: World-Grounded Decision
Making in LLM Agents via Goal-State Reflection. arXiv preprint arXiv:2505.15182
(2025,).

[25] Sunnie SY Kim, Elizabeth Anne Watkins, Olga Russakovsky, Ruth Fong, and
Andrés Monroy-Hernández. 2023,. " help me help the ai": Understanding how
explainability can support human-ai interaction. In proceedings of the 2023 CHI

conference on human factors in computing systems. 1–17.
[26] Lane Lawley and Christopher Maclellan. 2024,. Val: Interactive task learning

with gpt dialog parsing. In Proceedings of the 2024 CHI Conference on Human
Factors in Computing Systems. 1–18.

[27] Lane Lawley and Christopher J. MacLellan. 2024,. VAL: Interactive Task Learning
with GPT Dialog Parsing. In Proceedings of the CHI Conference on Human Factors
in Computing Systems (CHI ’24). doi:10.1145/3613904.3641915

[28] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020,. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in neural information processing systems 33 (2020,), 9459–9474.

[29] Amanda Li, Jason Wu, and Jeffrey P Bigham. 2023,. Using LLMs to Customize
the UI of Webpages. In Adjunct Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology. 1–3.

[30] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017,. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. 6038–6049.

[31] Yanhong Li, Chenghao Yang, and Allyson Ettinger. 2024,. When hindsight is
not 20/20: Testing limits on reflective thinking in large language models. arXiv
preprint arXiv:2404.09129 (2024,).

[32] Q Vera Liao and Kush R Varshney. 2021,. Human-centered explainable ai (xai):
From algorithms to user experiences. arXiv preprint arXiv:2110.10790 (2021,).

[33] Henry Lieberman. 1997,. Autonomous interface agents. In Proceedings of the
ACM SIGCHI Conference on Human factors in computing systems. 67–74.

[34] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. 2023,. Esti-
mating the carbon footprint of bloom, a 176b parameter language model. Journal
of machine learning research 24, 253 (2023,), 1–15.

[35] Jiaju Ma, Lei Shi, Kenneth Aleksander Robertsen, and Peggy Chi. 2025,. Am-
bigChat: Interactive Hierarchical Clarification for Ambiguous Open-Domain
Question Answering. In Proceedings of the 38th Annual ACM Symposium on User
Interface Software and Technology. 1–18.

[36] Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xiaokang Zhang, Xiaohan Zhang,
Sijia Luo, Xi Wang, and Jie Tang. 2024,. Spreadsheetbench: Towards challenging
real world spreadsheet manipulation. Advances in Neural Information Processing
Systems 37 (2024,), 94871–94908.

[37] Pattie Maes. 1995. Agents that reduce work and information overload. In Readings
in human–computer interaction. Elsevier„ 811–821.

[38] Manus. 2024. Leave it to Manus: General AI Agent for Work and Life. https:
//manus.im/home. Accessed: July 2025,.

[39] Donald A. Norman and Stephen W. Draper. 1986. User Centered System Design;
New Perspectives on Human-Computer Interaction. L. Erlbaum Associates Inc.,
USA,.

[40] Maxwell Nye, Michael Tessler, Josh Tenenbaum, and Brenden M Lake. 2021,.
Improving coherence and consistency in neural sequence models with dual-
system, neuro-symbolic reasoning. Advances in Neural Information Processing
Systems 34 (2021,), 25192–25204.

[41] OpenAI. 2025. Introducing ChatGPT agent: bridging research and action. https:
//openai.com/index/introducing-chatgpt-agent. Accessed: July 2025,.

[42] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022,.
Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022,), 27730–27744.

[43] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
Wermter. 2019. Continual lifelong learning with neural networks: A review.
Neural Networks 113 (2019), 54–71. doi:10.1016/j.neunet.2019.01.012

[44] rabbit research team. 2023,. Learning human actions on computer applications.
https://rabbit.tech/research

[45] Yijia Shao, Vinay Samuel, Yucheng Jiang, John Yang, andDiyi Yang. 2024,. Collabo-
rative gym: A framework for enabling and evaluating human-agent collaboration.
arXiv preprint arXiv:2412.15701 (2024,).

[46] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. 2023,. Reflexion: Language agents with verbal reinforcement learn-
ing. Advances in Neural Information Processing Systems 36 (2023,), 8634–8652.

[47] Ben Shneiderman and Pattie Maes. 1997. Direct manipulation vs. interface agents.
interactions 4, 6 (1997), 42–61.

[48] Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. 2024,. Chain of
thoughtlessness? an analysis of cot in planning. Advances in Neural Information
Processing Systems 37 (2024,), 29106–29141.

[49] Sangho Suh, Meng Chen, Bryan Min, Toby Jia-Jun Li, and Haijun Xia. 2024,.
Luminate: Structured generation and exploration of design space with large lan-
guage models for human-ai co-creation. In Proceedings of the 2024 CHI Conference
on Human Factors in Computing Systems. 1–26.

[50] Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. 2023,.
Cognitive architectures for language agents. Transactions on Machine Learning
Research (2023,).

[51] Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and
Subbarao Kambhampati. 2023,. Planbench: An extensible benchmark for evaluat-
ing large language models on planning and reasoning about change. Advances

https://doi.org/10.1145/3613904.3641915
https://manus.im/home
https://manus.im/home
https://openai.com/index/introducing-chatgpt-agent
https://openai.com/index/introducing-chatgpt-agent
https://doi.org/10.1016/j.neunet.2019.01.012
https://rabbit.tech/research


HierarchiCraft: Neural-Symbolic System to Support Agent Interactive Planning and Learning Conference’17, July 2017, Washington, DC, USA

in Neural Information Processing Systems 36 (2023,), 38975–38987.
[52] Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kamb-

hampati. 2024,. On the planning abilities of large language models-a critical
investigation. Advances in Neural Information Processing Systems 36 (2024,).

[53] Karthik Valmeekam, Kaya Stechly, Atharva Gundawar, and Subbarao Kambham-
pati. 2025,. A systematic evaluation of the planning and scheduling abilities of
the reasoning model o1. Transactions on Machine Learning Research (2025,).

[54] GuanzhiWang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu,
Linxi Fan, and Anima Anandkumar. 2023. Voyager: An Open-Ended Embodied
Agent with Large Language Models. arXiv:2305.16291 [cs.AI,]

[55] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang,
Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers of Computer Science 18, 6
(2024), 186345.

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022,. Chain-of-thought prompting elicits reason-
ing in large language models. Advances in neural information processing systems
35 (2022,), 24824–24837.

[57] Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian,
Yanghua Xiao, and Yu Su. 2024,. Travelplanner: A benchmark for real-world
planning with language agents. arXiv preprint arXiv:2402.01622 (2024,).

[58] Liwenhan Xie, Chengbo Zheng, Haijun Xia, Huamin Qu, and Chen Zhu-Tian.
2024,. Waitgpt: Monitoring and steering conversational llm agent in data anal-
ysis with on-the-fly code visualization. In Proceedings of the 37th Annual ACM
Symposium on User Interface Software and Technology. 1–14.

[59] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng
Cao, Toh J Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. 2024,. Os-
world: Benchmarking multimodal agents for open-ended tasks in real computer
environments. Advances in Neural Information Processing Systems 37 (2024,),
52040–52094.

[60] Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue
Bao, Zora Z. Wang, Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang,
Hao Yang Lu, Amaad Martin, Zhe Su, Leander Maben, Raj Mehta, Wayne Chi,

Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham Neubig. 2024. TheAgent-
Company: Benchmarking LLM Agents on Consequential Real World Tasks.
arXiv:2412.14161 [cs.CL] https://arxiv.org/abs/2412.14161

[61] Zhun Yang, Adam Ishay, and Joohyung Lee. 2023,. Coupling Large Language
Models with Logic Programming for Robust and General Reasoning from Text. In
Findings of the Association for Computational Linguistics: ACL 2023. 5186–5219.

[62] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023,. React: Synergizing reasoning and acting in language models.
In International Conference on Learning Representations (ICLR).

[63] Ryan Yen and Jian Zhao. 2024,. Memolet: Reifying the reuse of user-ai conver-
sational memories. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology. 1–22.

[64] Zeyu Zhang, Quanyu Dai, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Jieming Zhu,
Zhenhua Dong, and Ji-Rong Wen. 2025. A survey on the memory mechanism of
large language model-based agents. ACM Transactions on Information Systems
43, 6 (2025), 1–47.

[65] Yuheng Zhao, Junjie Wang, Linbin Xiang, Xiaowen Zhang, Zifei Guo, Cagatay
Turkay, Yu Zhang, and Siming Chen. 2024. Lightva: Lightweight visual ana-
lytics with llm agent-based task planning and execution. IEEE Transactions on
Visualization and Computer Graphics (2024).

[66] Jieyu Zhou and Christopher MacLellan. 2024,. Improving Interface Design in
Interactive Task Learning for Hierarchical Tasks based on a Qualitative Study. In
Adjunct Proceedings of the 37th Annual ACM Symposium on User Interface Software
and Technology. 1–3.

[67] Jieyu Zhou, Aryan Roy, SnehGupta, DanielWeitekamp, and Christopher JMacLel-
lan. 2025,. When Should Users Check? A Decision-Theoretic Model of Confirma-
tion Frequency in Multi-Step AI Agent Tasks. arXiv preprint arXiv:2510.05307
(2025,).

[68] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar,
Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. 2023,. Webarena:
A realistic web environment for building autonomous agents. arXiv preprint
arXiv:2307.13854 (2023,).

https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2412.14161

	Abstract
	1 Introduction
	2 Related Work
	2.1 Agent Learning
	2.2 Human Oversight in Agents

	3 Formative Study
	3.1 Interpretable Planning and Action
	3.2 Reliable Control
	3.3 Flexible Error Detection and Correction

	4 System Design
	4.1 Interaction Flow
	4.2 Symbolic Representation
	4.3 Hierarchical Visualization
	4.4 Flexible Feedback Mechanism
	4.5 Interpretable Planning and Learning

	References

